Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.039
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645858

RESUMO

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Assuntos
Desenvolvimento Ósseo , Diferenciação Celular , Condrócitos , Subunidade alfa 2 de Fator de Ligação ao Core , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Animais , Desenvolvimento Ósseo/fisiologia , Desenvolvimento Ósseo/genética , Condrócitos/metabolismo , Osteoblastos/metabolismo , Osteoblastos/citologia , Osteoclastos/metabolismo , Osteoclastos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Doenças Ósseas/genética , Doenças Ósseas/metabolismo , Osteoporose/genética , Osteoporose/metabolismo , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia
2.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
3.
Mol Genet Genomics ; 299(1): 33, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478174

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-ß1 (10 ng/mL), followed by miR-30b expression determination. TGF-ß1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-ß1, TNF-α, and IL-1ß was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-ß1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-ß1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Exossomos/genética , Exossomos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo
4.
Nat Commun ; 15(1): 1653, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395882

RESUMO

Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Mesonefro , Gônadas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
5.
Blood Adv ; 8(7): 1699-1714, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330198

RESUMO

ABSTRACT: Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.


Assuntos
Transtornos Herdados da Coagulação Sanguínea , Transtornos Plaquetários , Hemostáticos , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Humanos , Megacariócitos/metabolismo , Caveolina 1/metabolismo , Fibrinogênio/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Endocitose , Albuminas/metabolismo , Imunoglobulina G , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
6.
Nat Commun ; 15(1): 1832, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418452

RESUMO

PHF6 mutations (PHF6MT) are identified in various myeloid neoplasms (MN). However, little is known about the precise function and consequences of PHF6 in MN. Here we show three main findings in our comprehensive genomic and proteomic study. Firstly, we show a different pattern of genes correlating with PHF6MT in male and female cases. When analyzing male and female cases separately, in only male cases, RUNX1 and U2AF1 are co-mutated with PHF6. In contrast, female cases reveal co-occurrence of ASXL1 mutations and X-chromosome deletions with PHF6MT. Next, proteomics analysis reveals a direct interaction between PHF6 and RUNX1. Both proteins co-localize in active enhancer regions that define the context of lineage differentiation. Finally, we demonstrate a negative prognostic role of PHF6MT, especially in association with RUNX1. The negative effects on survival are additive as PHF6MT cases with RUNX1 mutations have worse outcomes when compared to cases carrying single mutation or wild-type.


Assuntos
Leucemia Mieloide Aguda , Neoplasias , Humanos , Masculino , Feminino , Proteínas Repressoras/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteômica , Mutação , Leucemia Mieloide Aguda/genética
7.
Genes Genomics ; 46(4): 461-473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180714

RESUMO

BACKGROUND: Rotator cuff injury (RCI) is a common shoulder injury, which is difficult to be completely repaired by surgery. Hence, new strategies are needed to promote the healing of tendon-bone. OBJECTIVE: We aimed to investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) overexpressing RUNX1 on the tendon-bone healing after RCI, and to further explore its mechanism. METHODS: Lentiviral vector was used to mediate the overexpression of RUNX1. RUNX1-overexpressed UCB-MSCs (referred to as MSC-RUNX1) were co-cultured with osteoclasts, and TRAP staining was performed to observe the formation of osteoclasts. Then MSC-RUNX1 was cultured in osteogenic differentiation medium, Alizarin red staining was conducted to detect osteogenic differentiation. The expression of markers of osteogenesis and osteoclast was detected by RT-qPCR. EA. hy926 cells were co-cultured with MSC-RUNX1. Transwell assay was used to detect the migration, and the expression of angiogenesis related-genes VEGF and TGF-ß was detected by RT-qPCR. The rat rotator cuff reconstruction model was established and MSCs were injected at the tendon-bone junction. Biomechanical test and micro-CT scanning were performed, and HE, Masson and Alcian Blue staining were used for histological evaluation of tendon-bone healing. TUNEL and PCNA immunofluorescence (IF) staining were performed to evaluate apoptosis and proliferation at the tendon-bone healing site. The levels of TNF-α, IL-6 and IL-8 in serum were detected by ELISA. The expression of CD31 and Endomucin that related to angiogenesis was detected by IF. Safranin O-fast and TRAP/CD40L immunohistochemical staining were used to assess the levels of osteoclasts and osteoblasts at the tendon-bone healing site. RESULTS: hUC-MSCs overexpressing RUNX1 inhibited osteoclast formation and promoted osteogenic differentiation. MSC-RUNX1 could promote the migration and tube formation of EA. hy926 cells, and up-regulate the levels of VEGF and TGF-ß. Model mice treated with MSC-RUNX1 partially restored the biomechanical indexes. Treatment of MSC-RUNX1 obviously increased the bone density, accompanied by the formation of new bone. In vivo experiments showed that MSC-RUNX1 treatment could promote tendon-bone healing and inhibit inflammatory response in rats. MSC-RUNX1 treatment also promoted angiogenesis at the tendon-bone healing site, while inhibiting osteoclast formation and promoting osteogenic differentiation. CONCLUSION: hUC-MSCs overexpressing RUNX1 can inhibit the formation of osteoclasts and differentiation of osteoblasts, promote angiogenesis and inhibit inflammation, thereby promoting tendon-bone healing after RCI.


Assuntos
Células-Tronco Mesenquimais , Osteólise , Humanos , Ratos , Camundongos , Animais , Osteogênese , Fator A de Crescimento do Endotélio Vascular/genética , 60489 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Tendões , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Cell Mol Biol Lett ; 29(1): 5, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172714

RESUMO

BACKGROUND: The abnormality of chromosomal karyotype is one factor causing poor prognosis of lymphoma. In the analysis of abnormal karyotype of lymphoma patients, three smallest overlap regions were found, in which MYCT1 was located. MYCT1 is the first tumor suppressor gene cloned by our research team, but its studies relating to the occurrence and development of lymphoma have not been reported. METHODS: R banding analyses were employed to screen the abnormality of chromosomal karyotype in clinical specimen and MYCT1 over-expression cell lines. FISH was to monitor MYCT1 copy number aberration. RT-PCR and Western blot were to detect the mRNA and protein levels of the MYCT1 and RUNX1 genes, respectively. The MYCT1 and RUNX1 protein levels in clinical specimen were evaluated by immunohistochemical DAB staining. The interaction between MYCT1 and MAX proteins was identified via Co-IP and IF. The binding of MAX on the promoter of the RUNX1 gene was detected by ChIP and Dual-luciferase reporter assay, respectively. Flow cytometry and CCK-8 assay were to explore the effects of MYCT1 and RUNX1 on the cell cycle and proliferation, respectively. RESULTS: MYCT1 was located in one of three smallest overlap regions of diffuse large B-cell lymphoma, it altered chromosomal instability of diffuse large B-cell lymphoma cells. MYCT1 negatively correlated with RUNX1 in lymphoma tissues of the patients. MAX directly promoted the RUNX1 gene transcription by binding to its promoter region. MYCT1 may represses RUNX1 transcription by binding MAX in diffuse large B-cell lymphoma cells. MYCT1 binding to MAX probably suppressed RUNX1 transcription, leading to the inhibition of proliferation and cell cycle of the diffuse large B-cell lymphoma cells. CONCLUSION: This study finds that there is a MYCT1-MAX-RUNX1 signaling pathway in diffuse large B-cell lymphoma. And the study provides clues and basis for the in-depth studies of MYCT1 in the diagnosis, treatment and prognosis of lymphoma.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Linfoma Difuso de Grandes Células B , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regiões Promotoras Genéticas , Linfoma Difuso de Grandes Células B/genética , Hematopoese , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo
9.
Cell Death Dis ; 15(1): 98, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286983

RESUMO

Extracellular matrix (ECM) remodeling has been implicated in the tumor malignant progression and immune escape in glioblastoma (GBM). Runt-related transcription factor 1 (RUNX1) is a vital transcriptional factor for promoting tumorigenesis and invasion in mesenchymal subtype of GBM. But the correlation between RUNX1 and ECM genes expression and regulatory mechanism of RUNX1 on ECM genes expression remain poorly understood to date. In this study, by using integral analysis of chromatin immunoprecipitation-sequencing and RNA sequencing, we reported that RUNX1 positively regulated the expression of various ECM-related genes, including Fibronectin 1 (FN1), Collagen type IV alpha 1 chain (COL4A1), and Lumican (LUM), in GBM. Mechanistically, we demonstrated that RUNX1 interacted with Nucleophosmin 1 (NPM1) to maintain the chromatin accessibility and facilitate FOS Like 2, AP-1 Transcription Factor Subunit (FOSL2)-mediated transcriptional activation of ECM-related genes, which was independent of RUNX1's transcriptional function. ECM remodeling driven by RUNX1 promoted immunosuppressive microenvironment in GBM. In conclusion, this study provides a novel mechanism of RUNX1 binding to NPM1 in driving the ECM remodeling and GBM progression.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ativação Transcricional , Histonas/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral/genética , Antígeno 2 Relacionado a Fos/genética
10.
Blood ; 143(7): 604-618, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37922452

RESUMO

ABSTRACT: Acute leukemia cells require bone marrow microenvironments, known as niches, which provide leukemic cells with niche factors that are essential for leukemic cell survival and/or proliferation. However, it remains unclear how the dynamics of the leukemic cell-niche interaction are regulated. Using a genome-wide CRISPR screen, we discovered that canonical BRG1/BRM-associated factor (cBAF), a variant of the switch/sucrose nonfermenting chromatin remodeling complex, regulates the migratory response of human T-cell acute lymphoblastic leukemia (T-ALL) cells to a niche factor CXCL12. Mechanistically, cBAF maintains chromatin accessibility and allows RUNX1 to bind to CXCR4 enhancer regions. cBAF inhibition evicts RUNX1 from the genome, resulting in CXCR4 downregulation and impaired migration activity. In addition, cBAF maintains chromatin accessibility preferentially at RUNX1 binding sites, ensuring RUNX1 binding at these sites, and is required for expression of RUNX1-regulated genes, such as CDK6; therefore, cBAF inhibition negatively impacts cell proliferation and profoundly induces apoptosis. This anticancer effect was also confirmed using T-ALL xenograft models, suggesting cBAF as a promising therapeutic target. Thus, we provide novel evidence that cBAF regulates the RUNX1-driven leukemic program and governs migration activity toward CXCL12 and cell-autonomous growth in human T-ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Medula Óssea/metabolismo , Cromatina , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
11.
Adv Sci (Weinh) ; 11(1): e2302203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37967345

RESUMO

Macrophage-myofibroblast transition (MMT) is a newly discovered pathway for mass production of pro-tumoral cancer-associated fibroblasts (CAFs) in non-small cell lung carcinoma (NSCLC) in a TGF-ß1/Smad3 dependent manner. Better understanding its regulatory signaling in tumor microenvironment (TME) may identify druggable target for the development of precision medicine. Here, by dissecting the transcriptome dynamics of tumor-associated macrophage at single-cell resolution, a crucial role of a hematopoietic transcription factor Runx1 in MMT formation is revealed. Surprisingly, integrative bioinformatic analysis uncovers Runx1 as a key regulator in the downstream of MMT-specific TGF-ß1/Smad3 signaling. Stromal Runx1 level positively correlates with the MMT-derived CAF abundance and mortality in NSCLC patients. Mechanistically, macrophage-specific Runx1 promotes the transcription of genes related to CAF signatures in MMT cells at genomic level. Importantly, macrophage-specific genetic deletion and systemic pharmacological inhibition of TGF-ß1/Smad3/Runx1 signaling effectively prevent MMT-driven CAF and tumor formation in vitro and in vivo, representing a potential therapeutic target for clinical NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , Miofibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
12.
Oncogene ; 43(6): 420-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092960

RESUMO

Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Histona Desacetilases/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
13.
Acta Pharmacol Sin ; 45(3): 633-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017299

RESUMO

Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Diterpenos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Translocação Genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
14.
Nat Immunol ; 24(12): 2042-2052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919525

RESUMO

Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.


Assuntos
Neoplasias , Trombocitose , Animais , Camundongos , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Megacariócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Precursoras Eritroides/metabolismo , Diferenciação Celular/fisiologia , Neoplasias/metabolismo , Trombocitose/metabolismo , Viés
15.
Int Immunopharmacol ; 125(Pt B): 111178, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951201

RESUMO

Acute myeloid leukemia (AML) with t(8;21)(q22;q22);(RUNX1::RUNX1T1) is highly heterogeneous and malignant. It has a relapse rate of nearly 40 %, resulting in clinical resistance or refractoriness to chemotherapy. Immune cells, particularly CD4(+) T and CD8(+) T lymphocytes, have been discovered to be dysfunctional in this condition, and functional recovery shows promising efficiency in preclinical trials. Here, with single-cell transcriptomic data from de novo AML patients with RUNX1::RUNX1T1 and at various stages following disease progression, we investigated the genes correlated with T-cell proliferation and activation. In leukemia cells, ADA, AHCY, GPN3 and LTBR were markedly highly expressed compared to those in T-cell at diagnosis, and they tended to increase with disease progression. Additionally, we discovered that AHCY was an effective biomarker to predict the overall survival as well as relapse-free survival of AML patients with RUNX1::RUNX1T1. The correlation of AHCY with infiltrated immune cells and immune checkpoints was also investigated. AML cohorts from two other independent studies, TCGA LAML (n = 145) and the GEO dataset (n = 104), also demonstrated an inferior outcome for AML patients with high AHCY expression. In conclusion, our research revealed that AHCY might function as a novel indicator to predict the prognosis and efficiency of T-cell proliferation and activation in AML patients with RUNX1::RUNX1T1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Análise da Expressão Gênica de Célula Única , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Biomarcadores , Recidiva , Leucemia Mieloide Aguda/metabolismo , Progressão da Doença
16.
BMC Cardiovasc Disord ; 23(1): 541, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936072

RESUMO

BACKGROUND: Runt-related transcription factor-1 (RUNX1), a key member of the core-binding factor family of transcription factors, has emerged as a novel therapeutic target for cardiovascular disease. There is an urgent need to fully understand the expression pattern of Runx1 in the heart and the mechanisms by which it is controlled under normal conditions and in response to disease. The expression of Runx1 is regulated at the transcriptional level by two promoters designated P1 and P2. Alternative usage of these two promoters creates differential mRNA transcripts diversified in distribution and translational potential. While the significance of P1/P2 promoter-switch in the transcriptional control of Runx1 has been highlighted in the embryogenic process, very little is known about the level of P1- and P2-specific transcripts in adult hearts, and the underlying mechanisms controlling the promoter-switch. METHODS: To amplify P1/P2 specific sequences in the heart, we used two different sense primers complementary to either P1 or P2 5'-regions to monitor the expression of P1/P2 transcripts. DNA methylation levels were assessed at the Runx1 promoter regions. Rats were grouped by age. RESULTS: The expression levels of both P1- and P2-derived Runx1 transcripts were decreased in older rats when compared with that in young adults, paralleled with an age-dependent decline in Runx1 protein level. Furthermore, older rats demonstrated a higher degree of DNA methylation at Runx1 promoter regions. Alternative promoter usage was observed in hearts with increased age, as reflected by altered P1:P2 mRNA ratio. CONCLUSION: Our data demonstrate that the expression of Runx1 in the heart is age-dependent and underscore the importance of gene methylation in the promoter-mediated transcriptional control of Runx1, thereby providing new insights to the role of epigenetic regulation in the heart.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Epigênese Genética , Animais , Ratos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , RNA Mensageiro/genética
17.
Exp Eye Res ; 237: 109695, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890757

RESUMO

Our previous report established that RUNX family transcription factor 1 (RUNX1) promotes proliferation of mouse retinal microvascular endothelial cells (mRMECs) and exacerbates diabetic retinopathy (DR). However, the mechanism behind the upregulation of RUNX1 remains unclear. This study aims to investigate the possible correlation between histone SUMOylation and RUNX1 in DR, as well as the involved molecules. A mouse model of diabetes was induced by streptozotocin (STZ). These mice had increased retinal thickness and elevated production of inflammatory cytokines. Additionally, they showed elevated levels of SUMO1 and SUMO2/3, but reduced levels of SUMO specific peptidase 1 (SENP1) in retinal tissues. Co-immunoprecipitation and Western blot assays revealed that the RUNX1 protein was primarily modified by SUMO2/3, and SENP1 inhibited SUMO2/3 modification, thereby reducing RUNX1 expression. Overexpression of SENP1 alleviated symptoms in mice and alleviated inflammation. In vitro experiments demonstrated that the SENP1 overexpression suppressed the proliferation, migration, and angiogenesis of high-glucose-induced mRMECs. However, further overexpression of RUNX1 counteracted the alleviating effects of SENP1 both in vivo and in vitro. In conclusion, this study demonstrates that the downregulation of SENP1 in DR leads to SUMO2/3-dependent activation of RUNX1. This activation promotes proliferation of mRMECs and exacerbates DR symptoms in mice.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Retina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/farmacologia
18.
Pathol Res Pract ; 251: 154886, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844486

RESUMO

BACKGROUND: Runt-related transcription factor 1 (RUNX1), also called acute myeloid leukaemia 1, is a member of RUNX family of transcription factors. This family is composed of evolutionarily conserved transcription factors that function as critical lineage determinants in various tissues, however its function in cancer development and clinical significance in RCC are still unknown. METHODS: We used paraffin-embedded tumor tissues from 100 patients and fresh-harvested and paired adjacent normal renal tissues from 15 RCC patients who underwent primary surgical resection in Xijing Hospital between 2018 and 2022. The expression level of RUNX1 was evaluated by immunohistochemistry and Western Blot. RUNX1 promoted tumor cells proliferation, migration and invasion were verified by CCK-8, wound-healing and transwell assays. Finally, we constructed a xenografts model of the 786-O cell lines to observe the effect of RUNX1 on tumorigenesis in vivo. RESULTS: TCGA database showed higher RUNX1 expression levels in KIRC (kidney renal clear cell carcinoma). In overall survival analysis, RCC patients with higher RUNX1 expression level would have a shorter survival period than those with lower expression. Similarly, immunohistochemical results of our cohort also showed that RUNX1 was over-expression in cancer tissues than in corresponding non-cancer tissues. We also proved this result at protein level by western-blot. Meanwhile, prognostic and OS analyses of our cohort showed that the RUNX1 expression level was an individual prognostic factor in RCC patients. CCK-8, wound-healing and transwell assays proved that the overexpression of RUNX1 in Caki-1 cells promoted the proliferation, migration and invasion of the cells. Knocking down RUNX1 in 786-O cells inhibited the proliferation, migration and invasion of cells. The experimental results of xenografts model in nude mice showed that the knockdown of RUNX1 in 786-O cells slowed down the growth of tumor. CONCLUSION: RUNX1 is a poor prognostic factor of clear cell renal carcinoma, which may provide a novel therapeutic target for ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Camundongos Nus , Sincalida/metabolismo , Sincalida/farmacologia , Prognóstico , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
19.
FASEB J ; 37(11): e23195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801076

RESUMO

RUNX1, a member of the RUNX family of metazoan transcription factors, participates in the regulation of differentiation, proliferation, and other processes involved in growth and development. It also functions in the occurrence and development of tumors. However, the role and mechanism of action of RUNX1 in non-small cell lung cancer (NSCLC) are not yet clear. We used a bioinformatics approach as well as in vitro and in vivo assays to evaluate the role of RUNX1 in NSCLC as the molecular mechanisms underlying its effects. Using the TCGA, GEO, GEPIA (Gene Expression Profiling Interactive Analysis), and Kaplan-Meier databases, we screened the differentially expressed genes (DEGs) and found that RUNX1 was highly expressed in lung cancer and was associated with a poor prognosis. Immunohistochemical staining based on tissue chips from 110 samples showed that the expression of RUNX1 in lung cancer tissues was higher than that in adjacent normal tissues and was positively correlated with lymph node metastasis and TNM staging. In vitro experiments, we found that RUNX1 overexpression promoted cell proliferation and migration functions and affected downstream functional proteins by regulating the activity of the mTOR pathway, as confirmed by an analysis using the mTOR pathway inhibitor rapamycin. In addition, RUNX1 affected PD-L1 expression via the mTOR pathway. These results indicate that RUNX1 is a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica
20.
Blood Adv ; 7(23): 7304-7318, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756546

RESUMO

Germ line mutations in the RUNX1 gene cause familial platelet disorder (FPD), an inherited disease associated with lifetime risk to hematopoietic malignancies (HM). Patients with FPD frequently show clonal expansion of premalignant cells preceding HM onset. Despite the extensive studies on the role of RUNX1 in hematopoiesis, its function in the premalignant bone marrow (BM) is not well-understood. Here, we characterized the hematopoietic progenitor compartments using a mouse strain carrying an FPD-associated mutation, Runx1R188Q. Immunophenotypic analysis showed an increase in the number of hematopoietic stem and progenitor cells (HSPCs) in the Runx1R188Q/+ mice. However, the comparison of Sca-1 and CD86 markers suggested that Sca-1 expression may result from systemic inflammation. Cytokine profiling confirmed the dysregulation of interferon-response cytokines in the BM. Furthermore, the expression of CD48, another inflammation-response protein, was also increased in Runx1R188Q/+ HSPCs. The DNA-damage response activity of Runx1R188Q/+ hematopoietic progenitor cells was defective in vitro, suggesting that Runx1R188Q may promote genomic instability. The differentiation of long-term repopulating HSCs was reduced in Runx1R188Q/+ recipient mice. Furthermore, we found that Runx1R188Q/+ HSPCs outcompete their wild-type counterparts in bidirectional repopulation assays, and that the genetic makeup of recipient mice did not significantly affect the clonal dynamics under this setting. Finally, we demonstrate that Runx1R188Q predisposes to HM in cooperation with somatic mutations found in FPDHM, using 3 mouse models. These studies establish a novel murine FPDHM model and demonstrate that germ line Runx1 mutations induce a premalignant phenotype marked by BM inflammation, selective expansion capacity, defective DNA-damage response, and predisposition to HM.


Assuntos
Transtornos Plaquetários , Neoplasias Hematológicas , Animais , Camundongos , Humanos , Mutação em Linhagem Germinativa , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Suscetibilidade a Doenças , Transtornos Plaquetários/genética , Inflamação/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/complicações , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...